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Abstract

In this paper a characterization of functions whose stationary

points are global minima is studied. By considering the level sets of

a real function as a point-to-set mapping, and by examining its semi-

continuity properties, we obtain a result that a real function, defined

on a subset of R and satisfying some mild regularity conditions, be-

longs to the above family if and only if the point-to-set mapping of its

level sets is strictly lower semicontinuous. Mathematical programming

applications are also mentioned.
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1. Introduction

Point-to-set mappings and their semicontinuity properties have

recently been the subject of a number of studies in the mathematical

programming literature, see for example Hogan (1], Robinson and Meyer (21

and Zangwill [3). In Zang and Avriel[ 41, and Zang, Choo and Avriel [5]

it was shown that a necessary and sufficient condition for a real function,

defined on a subset of Rn , to be in the family of functions whose local

minima are global, is that its level sets, considered as a point-to-set

mapping, is lower semicontinuous.

In this work we direct our attention to deriving a similar con-

dition for a function to belong to the family of functions whose stationary

points are global minima. This condition will use some stronger semi-

continuity properties of level sets.

Let f be a real function on a subset C of Rn and let a be a real

number. Consider the level sets of f

(1) Lf(c() = {x : x E C,f(x) < a }

and the effective domain of Lf(a), i.e. the set

(2) Gf W [a : a E R, Lf(a) # 0 ).

Note that for any real function the set Gf is an interval.

Clearly, Lf(a) is a point-to-set mapping of points in Gf into subsets of

Recalling the definition of lower semicontinuity of point-to-set mappings

we have (see Meyer [61)

Definition 1. The point-to-set mapping Lf(a) is said to be lower

semicontinuous (lsc) at a point a E Gf if x E Lf(a), (a i C Gf,

2



S) ca imply the existence of a natural number K and a sequence {x i

such that

(3) x EL (ai), i - K, K+l,... and {x x.
f

If Lf(a) is lsc at every a E Gf it is said to be isc on G
f f f*

Lower semicontinuity of the level set mapping Lf(a) can be used

to characterize functions whose local minima are global[4,5]. Level set

mappings are monotone in a certain sense: For any two a E Gf, E G f

such that a < a we have Lf( )C Lf (a). For such mappings the property

to be defined next is stronger than lower semicontinuity.

Definition 2. The point-to-set mapping Lf(a) is said to be strictly

lower semicontinuous (slsc) at a point a E Gf if x E Lf(a), (aiI C Gf,

{i} - a imply the existence of a natural number K, a sequence {x 
}

and a real number 8(x)> 0 such that

(4) x E Lf [ai - W(x)lx i - xlj,i - K,K + 1,..._I.{x 1 I x

If Lf(a) is slsc at every a E Gf it is said to be slac on Gf.

Clearly, if Lf(a) is slse then it is also lsc. Let B6 (x) C Rn

denote an open ball with radius 6 centered around x.

Definition 3. A point x E C is a local minimum of f if there exists

a 6 > 0 such that

(5) f(x) > f(x)

for every x E C n B (x) and it is a global minimum of f on C if (5)

holds for every x E C.
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A necessary condition for a local minimum of a real function

defined on an open subset of P and differentiable at a point x

is Vf(x)- 0, where Vf is the gradient of f. A point where the gradient

of f vanishes is also called a stationary or critical point of f. Since

we shall consider differentiable functions (in a certain sense) which may

be defined on a nonopen set it is necessary to extend the classical

definition of a stationary point.

We first recall the definition of tangent directions as defined

by Hestenes [71.

Definition 4. Let C be a nonempty subset of Rn and let x0 E C.

A vector Y E Rn is called a tangent direction to C at the point x
0

if there exists a sequence {xk I C C satisfying xk 0 x , {x k x and

k 0
(6) lim x -x = Y.

k- i xk-xOi

The sequence {x k } is said to define the direction y.

If x0 is an isolated point (x
0 is isolated if {x 

O and C/{x 0

0are disconnected), then there exists no sequence in C converging to x,
k 0and satisfying x 0 xO . In this case y - 0 is said to be the only tangent

0
direction to C at xO . The collection of all tangent directions to C

at x0 will be denoted Y(C,x ).

0
We may note here that the "cone of tangents" to a set C at x , used

in constraint qualification analysis of mathematical programing is the cone

consisting of nonnegative multiples of vectors y e Y(C,x ), see for

example Gould and Tolle 18] , or Avriel [9]. Let us define now the concept

of y-derivatives.

4
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Definition 5. Let f be a real function on C C Rn, x E C and y E Y(C,x).

If there exists a real number f(x,y) such that

(7) lim f(xk) - f(x) -f(,

1ix X xl!

for every sequence {ck } C C which defines y, then 6f(x,y) is called the

y-derivative of f at x.

If C is an open set and x E C, then Y(C,x) - Rn . Suppose f is

differentiable at x. Then 6f(x,y) - y Vf(x) is the y-derivative of f

at x for every direction y E Rn.

We now define a stationary point as we shall refer to it in the

sequel.

Definition 6. Let f be a real function on C C Rn and suppose that

f has a y-derivative at x E C for every y 1 Y(Cx). The point x is said

to be a stationary point of f if 6f(x,y) > 0 for every y E y(C,x).

It was shown by Hestenes [71 that, if R is a local minimum of a real

function, differentiable at x, then it is also a stationary point, but not

conversely. The concept of stationary pointsdefined here extends the class-

ical definition so that it includes more points which may be possible cand-

idates for a local minimum. Clearly, if x lies in the interior of the

domain of f, the concept defined here and the classical one,Vf(x)- 0, are

identical.

2. Stationary Points and Global Minima

Suppose that f is a real function on C C Rn . For every real

number > 0 and x G C , let f,- be the function defined by

f ,R(x) =f(x) + a1x- ii for x EC.



The following theorem gives two equivalent conditions for the point-to-set

mapping Lf(a) to be slsc at a point a E Gf

Theorem 1. Let f be a real function on C C Rn and let C E Gf ' The

following statements are equivalent:

(a) Lf(a) is slsc at a ;

(b) For every x E Lf(0) such that f(x) - , either f has a global minimum

at x or there exists a positive real number 0 such that f ,. does

not have a local minimum at R ;

(c) For every i E LfC0) such that f(i) - d , either f hasa global minimum

at x or there exist a sequence {y1 } C C and a positive real number

8(x) such that y # i for all i and

(8) yEi z Lf (a 8()y -i0] i - 1,2,... and {y i I

Proof. (a) 1 (b) . Suppose that f(x ) < f(i) - & for some x0 E C

Then there exists a sequence {a i C Gf such that {ai I - and

f(x0) < a < ai+l < & for all i . By Definition 2, there exist a natural

number K , a sequence {x I C C and a real number a > 0 such that

(9) x E Lf[ai - a'xi - RI] i - K,K+1,... and {x 1 1

Then,

i - i(10) f ,(xi) f(xi) + x - x1 < a < i = K,K+l,... and {xi} .*

Thus i is not a local minimum of f

6
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(b) * (c) Suppose that f(xO) < f(R) 0 for some x C then

there exists a positive real number such that R is not a local

minimum of fx . Thus there exists a sequence {yi} C C such

that f (y ) < f .-(X) and {y 1 x . Obviously, y i x for6,,x)

all i , and

I i}
(11) f(yi) < -_ y -yi_ i = 1,2,... and {y X E

It is easy to see that (11) implies (8) with 7(R) =

(c) - (a) . Let R EL() , {Xi } C Gf and {a i} &. Jif

f(x) < a the definition of strict lower semicontinuity can be easily

satisfied at x . So we need to consider only the case when f(R) = 3

If f has a global minimum at R , then ai > & for all i . In this

i
case we let x = R for all i and 8 be any positive real number.

If R is not a global minimum of f , then there exist a sequence

{yi C C and a positive real number (x) such that y # R for all

i and (8) holds. Let ti = inf{ai ai+l } for all i Then t < tI." __

i < a i  for all i and iti} - . For each i , it follows from (8),

y i and {t I that there exists an integer Ni such that

(12) f(y)< t 2 (Xy j =12fyi) ! - -()y _ Ni+l,Ni+2,..

The integers Ni  can be chosen so that i < Ni < Ni+ 1  for all i

Now, for each i > N there exists i * i* (i) such that Ni,*+l < i < N,+ .

Let xi = yi*() for all i > N I' Then {xi C C and {x i

From (12), we have for each i > N1



(13) f (IX y 2 1* l i - N '4,1 0 ...

I partIlcular,( 13) Is satitied for I, hvmvwk- I N * + I Therefore,

(14) f(x I) t L- I - l i = N +I,N +2 ....
2 1'

By the definition of t and letting 3(x) =f (x) we have

(15) f(xi) < ct -8(x)x -x i NI+1,N1+2,...

Consequently, Lf (a) is slsc at a . fJ

Theorem 2. Let f be a real function on C C Rn  and let i E C such

that f(i) & a . Suppose f has a y-derivative for every y E Y(C,i)

Then i is r stationary point of f if and only if i is a local

minimum point of f , for every real number 8 > 0

Proof. Suppose i is not a local minimum of f,, for some real

number 8 > 0 . Then there exists a sequence {xi I C C such that

f ,(xi) < f ,1 (x) - for all i and {x I . We may assume that

xi _

(16) y = im
-+ ®x i  R1E

exists. It follows from f ,(x ) < c - f(x) for all I that

8



(17) f(xi) - f(X) < - for all i
RX I

Thus 6f(X,y) < 0 and x is not a stationary point of f

ix}  Can { i }  x i i  x
Suppose that tx I CC and (x = K -

i - llx1 -

and 6f(-x,y) < 0 Let B = -- 6f(xY) Then 8 > 0 and there exists

a natural number N such that

(18) f(xi) - f(x) < -8 £ = N,N+,...
Oxi  R

Thus

(19) f(xi) + 811x - f(x) i = N,N+l,... and {x I

Hence x is not a local minimum of f 0

As an immediate result from Theorem 1 and 2 we get

Corollary 1. Let f be a real function on C C Rn. Suppose that for

every x E C , f has a y-derivative at x for each y E Y(C,x). Then

every stationary point of f is a global minimum of f on C if and only

if Lf(c() is slsc on Gf ,

The following corollary is a special case of Corollary 1.

Corollary 2. Let f be a real differentiable function on an open set

containing C C Rn . Every stationary point of f is a global minimum

of f on C if and only if Lf(c() is slac on Gf

9



Let us illustrate now our results by some examples.

Example 1. If x is a stationary point which is not a global minimum,

then L f(a) is not slsc at a - f(i) . In order to show it, consider

the function

3
(20) f(x) = (x)

defined on the interval C = [-1,1] This function has a stationary

point at x = 0 , which is not a global minimum. Take any sequence

{ai} = 0 satisfying

(21) -1 < ai < 0 i = 1, 2,

and suppose that Lf((X) is slsc at a = 0 . Then there exist a a(0) > 0

and a sequence {xi } 10 satisfying

(22) f(xi) = (xi) 3 < i _ (0) lix - 01 i = 1,2,...

From (21) and (22) we get that Ixi } must satisfy

(23) xi < 0 1 = 1,2,...

and from (21), (22) and (23) we get

(24) (x) 3 < ai + 8(O)xi < (0)x i - 1,2.

10



)Dividing bv we hmve

(25) (x ) 2 > (O) > 0 1 = 1,2,...

But ix1 } () , contradicting (25) . It follows then that Lf(c) is

not sIsc at -", ( 0 . 0

Examp-le_2. Let f be the function defined on [-211,1 as follows:

2x + 51 if -2H1< x <-T
11 -

(26) f(x) = sin(x-H )+ 2 if -II < x < 0

22

e if 0 x< .

This function is illustrated in the following figure

f x)

2
e

x

11
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The points -21 and 0 are the only stationary points of f on [-211,1] and

we see that they are also global minima of f on [-211,1] The function

f has a (+l)-derivative= at x - -211 and a (-l)-derivative- -2e2 at

x = 1 . It has both (+I) and (-l) derivatives at each x E (-211,1)

Hence at every x E [-211,11 , f has a y-derivative for each y E Y([-2l,Ix)

It follows from Corollary 1 that Lf is slsc on Gf = [I,-) . Note that

even though f has local maxima at -H and 1 , they are not stationary

points of f . I

Let us look now at the family of pseudoconvex functions, defined

by Mangasarian [10]: A real differentiable function f on an open set

containing the convex set C E R is said to be pseudoconvex on C

if x , x EC and

(27) f (,X < f(3t)

implies

(28) (X - i)TVf(R) < 0

It is well known that for these functions every point R satisfying

Vf(i) - 0 is a global minimum. The proof of the following theorem is

omitted.

Theorem 3. Let f be a real differentiable function on an open set con-

taining a convex set C C Rn . If f is pseudoconvex on C , then

Lf((I) is slsc on Gf '

The converse result, of course, does not hold since there are

functions whose stationary points are global minima but they are not

pseudoconvex.

12



3. An- Alication to Mathematical Programming

Let us present now some sufficient conditions for a global minimum

in a general mathematical program given by

(29) (p) min f(x)

subject to

(30) gi(x) > 0 1= 1,...,m

(31) h.(x) = 0 j
J

We state the next theorem without proof.

Theorem 4. Let f,g ... ,gm , h h...,h be real functions on the set

(32) X = tx:x E Rn, gi(x) > 0, i=1h... ,m, hi(x) = 0, j=l, ... p} .

Suppose that every stationary point of f in X is a global minimum of

f on X . If there exist x* E Rn  * E Rm , * E RP  satisfyig

m p

(33) 6f(x*,y) - Xi6g (x y) p J 6h (xy)>0

for every y E Y(X,x*) and

(34) X*g 1 (x*) 0 i - 1,...

13



(35) gi(x*) > 0 i 1,...,

(36) h (x*) -0 j 1....p

(37) X*> 0

then x* is a global optimum of problem (P).

Note that these sufficient conditions do not assume convexity or

its conventional generalizations (e.g. quasiconvexity, pseudoconvexity)

of the functions involved. If f , gl,... gm, hl,.,.,h p  are differentiable

on an open set containing X then (33) becomes

m 
p

(38) yT f(x*) - 1 X Vg (x*) - pl Vh(x*) > 0

S =i

4. Some Properties of Functions Having Slsc Level Sets.

We shall consider from now on functions defined on subsets of

Rn  in the extended sense, i.e. f is a real function on C C Rn means

that f(x) + - if x 9C .

Let f and f2 be real functions on the subsets C1 and C2

of Rn respectively. The infimal convolution of these two functions

is defined as

(39) g(x) - (f1 I f2)(x) - inf{f (xl) f 2(X2): x 1 E Cl,x 2 E C22x + x2  x)

and it is a real function on the set C = C + C2  {xI + x2: x1 E Cl, X2 E C 2

14



Let f be a real function on C C Rn. Then the nonnegative

right scalar multiplication is defined as

Af(x/A) for A > 0

(40) h(x) = fX(x) 0 for X = 0, x = 0

+ 0 otherwise

These two operations are defined in Rockafellar [11]. It is noted there

that the infimal convolution corresponds to summation of the epigraphs

of the functions f and f2 " If it is possible to replace the in-

fimum in (39) by minimum, we have

(41) epi(g) = epi(f1 ) + epi(f 2 )

It is also noted in [11] that nonnegative right scalar multiplication

corresponds to nonnegative scalar multiplication of the epigraph of

f and

(42) epi(h) = X epi(f) for X > 0

The family of convex functions is closed under these two operations. Let

us show now that the family of real functions, defined on compact sets

and having slsc level sets, is also closed under these two operations (a real

function f on C C Rn is said to be closed if its epigraph is closed

relative to G x R).

Theorem 5. Let f, and f2 be real closed functions on the compact subsets

C1 and C2  of Rn , having slec levels sets on Gf and Gf2 respectively.

15



Then L (a) , where g is defined by (39), is slsc on the set

(43) G = {a E R : L ( ) 0} -C + Gf *

Proof. By (39), the closedness of f. f2 and the compactness of

C1 I C2 we have

(44) g(x) = f1 l f2)(x) = min{f1 (x
1 ) + f2 (x

2) x1E C1 , x2 E C2,

1 x2  X} .

Let -aE G . If a is the global minimum value of g on C1 + C2
g 1 C

then L (a) is slsc at a . Suppose a is not the global minimum
g

value. If g(i) f a , there exist kE C1  and x E C2  such that

(45) x + x and f1 (X) + (x) - gi)

Since L (a) and L (a) are slsc on G and C respectively, itLfl f2  o f f

follows from Theorem 1 that there exist real numbers 8(x) > 0 , 8(2) > 0

%i 'I ^i
and sequences {X } CC, {xi} CC 2  satisfying x * , x * x for

all i , such that

(46) X ELf1 (fl(x 8(% )Ix  _ x) i-1,2,... and {'X' } *x

and

(47) x L -(xi - 1i -1,2,.... and {X^ -X

16
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By (45), (46) and (47), we get

(48) f + f2(x') g(i) x x# - (xZI -
1  1,2,...-%j "(I -

"  f =12,.

and {x i+x}-x.

Let f(x) - min { (x), ( )} . It follows from (48) that

(49) f(l(x) + f(W) < g(x) - ' Ix + -x- i - 1,2....

(50) < g(3E) W (x( +  R i - 1,2,...

and i + i) x

B taking y£ %i + iy=x + for every i ,we have y * for all i,

(51) yi E L -9 ( )y - i,) i 1,2,... and {yi} -x

By Theorem 1, L (a) is slsc at c . Thus L (a) is slsc on G 0]
gg g

Theorem 6. Let f be a real function on C C Rn  and suppose that Lf( )

is slsc on Gf . Also let h be defined by (40). Then for every

> 0, Lh(c() is slsc on the set Gh given by

XG f if A > 0

(52) Gh

E R > if X 0

17



Proof. The result is obvious when A 0 . Suppose \ ? 0 . Let & E Gh

If a is the global minimum value of h on AC , then Lh (X) is slac

at c Suppose 5 is not the global minimum value and h(i) = Xf(i/X) .

Then f(x/A) - a/A . Since a is not the global minimum value of h on

XC , hence &/A is not the global minimum value of f on C . Since

Lf is slsc on Gf , by Theorem 1 there exist a positive real number B(x)

and a sequence {xi } C C satisfying x i * x/X ,

(53) x EL [(&/A) - 3(i)|x - ( /A)l] i = 1,2,... and {x} - /X

Let yi -xi for all i . Then y * x for all i . It follows from

(40) and (53) that

(54) yi E Lh[ - 6( )|yi - il] i - 1,2,... and {y } x

By Theorem 1, Lh(c() is slsc at c0 . Consequently, Lh(c() is slsc on Gh

Q.E.D.

As a result from the last two theorems we conclude that the family

of closed functions, defined on compact sets and having the property that

every stationary point is a global minimum, is closed under infimal con-

volution and nonnegative right scalar multiplication.

Acknowledgement. The authors are thankful to an anonymous referee of an

earlier version of this paper for his valuable comments.
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